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Abstract

The ®rst two of the quartet, completeness, continuity, consistency and correctness conditions, required for the
development of robust displacement based ®nite elements are well understood as far as the anisoparametric elements
are concerned. When such elements are formulated (primarily for accuracy due to their improved consistent load

and mass capabilities) by incorporating transverse shear deformation e�ect, it becomes necessary to study the next
two of the quartetÐ(®eld) consistency and (variational) correctness aspects and to explore further their
susceptibility for spurious e�ects such as locking, stress oscillations etc. Such a study on a typical anisoparametric

element formulation is presented in this paper. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

Most general purpose ®nite element computing is now based on shear deformable beam (Timoshenko)
and plate/shell (Mindlin) elements. These are usually based on simple isoparametric shape functions.
Problems like locking that plagued such formulations have now been eliminated using reduced
integration or other equivalent ®eld-consistent approaches (Prathap, 1993).

The simplest beam element in this class is a two-noded element using linear C0 functions for the
transverse displacement w and face rotation y. It is capable of representing a state of constant bending
moment and constant shear force within each element. The convergence characteristics of this element
depends on this fact and also on the way consistent distribution of applied forces and mass matrices are
performed. Thus, a large number of elements must be used (Kant and Marur, 1991) if high accuracy is
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needed in an application. This shortcoming is particularly evident in applications such as dynamics or
buckling, or even statics under rapidly varying distributed loading, where consistent mass, geometric
sti�ness matrices and load vector are not of high accuracy due to the simple linear representation for w.

This state of a�airs can be improved if one resorts to what is called an `anisoparametric formulation'
(Tessler and Dong, 1981). Here, one can adopt a higher order representation for w, which is the factor
that determines the accuracy of the consistently derived load and mass matrices while retaining a linear
representation for y.

As the completeness and continuity of such class of shear deformable elements are well-known (Davis
et al., 1972; Nickel and Secor, 1972; Thomas et al., 1973), it is also perceived to be important to explore
the (®eld) consistency and (variational) correctness aspects of such formulations to understand the
behaviour related to locking, stress oscillations, etc. Such an analysis of a typical shear deformable
anisoparametric element is presented here.

2. Element de®nition

A two-noded element with the following six degrees of freedom is considered:

d � �w1y1b1w2y2b2�t, �1�

where w is the transverse displacement, y is the rotation of cross-section and b is the rotation of the
neutral axis de®ned by the ®rst derivative of w represented as w,x.

The transverse displacement in an element of length L (=2l ) is expressed using Hermitian polynomial
as

w � a0 � a1

�
x

l

�
� a2

�
x

l

�2

�a3
�
x

l

�3

: �2�

The four constants of the above equation can be expressed in terms of the nodal degrees of freedom
as

a0 � �w1 � w2�
2

ÿ �b2 ÿ b1�l
4

, �3a�

a1 � 3�w2 ÿ w1�
4

ÿ �b1 � b2�l
4

, �3b�

a2 � �b2 ÿ b1�l
4

�3c�

a3 � �w1 ÿ w2�
4

� �b1 � b2�l
4

: �3d�

The rotation of cross section is expressed by a linear polynomial as
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y � b0 � b1

�
x

l

�
, �4�

where b0=(y1+y2)/2 and b1=(y2ÿy1)/2, and y1 and y2 are de®ned at x=ÿl and x=l respectively.

3. Field-consistency interpretation

An examination of this element from ®eld-consistency considerations (Prathap, 1993) is carried out
now. The consistency paradigm argues that spurious e�ects like locking, delayed convergence and stress-
oscillations can occur in a problem only if the shear strain ®eld which is used to compute the shear
strain energy generates spurious constraints. The bending and shear strains, for the interpolation scheme
described by Eqs. (2) and (4), can be described as

w � b1
l
, �5a�

g �
�
b0 ÿ a1

l
ÿ a3

l

�
�
�
b1 ÿ 2a2

l

��
x

l

�
�
�
a3
l

�"
1ÿ 3

�
x

l

�2
#

�5b�

and the resulting shear strain energy can be expressed as

US � 1

2
kGA�2l �

"�
b0 ÿ a1

l
ÿ a3

l

�2

� 1

3

�
b1 ÿ 2a2

l

�2

� 4

5

�
a3
l

�2
,

5

#
: �5c�

The constraints that would emerge at the thin-beam or Kirchho� limit are:

b0 ÿ a1
l
ÿ a3

l
40, �6a�

b1 ÿ 2a2
l
40 �6b�

a340: �6c�

In the ®eld-consistency terminology, Eqs. (6a) and (6b) re¯ect physically meaningful constraints,
showing a consistent balance of terms from the w and y ®elds. The only cause for concern is the
constraint appearing in Eq. (6c), as it only comprises terms from the w ®eldÐan inconsistent constraint
(Prathap, 1993).

The e�ect of a3 on the mechanics of the element would be studied a posteriori through a numerical
experiment. The element sti�ness matrix, consistent mass matrix and load factors are generated using
usual procedures and are not elaborated here. Exact integration is used for shear terms.

Let this element version be designated as ORIG, to denote that it is the original element without any
extra-variational manipulations like reduced integration or strain smoothing.
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4. Consistent-(variationally) correct element

It would be useful to examine a strain-smoothed element which will be ®eld-consistent in the strictest
sense in which it is de®ned by Prathap (1993). It is required to compute an `assumed' strain for this,
which will be of the form:

gCC � c0 � c1

�
x

l

�
: �7�

A variationally correct reconstitution of this strain-®eld can be made using the orthogonality
condition that emerges from the Hu±Washizu theorem (Prathap, 1993):�

dgtCC�gCC ÿ g�dx � 0: �8�

This gives the consistent and correct strain ®eld as

gCC �
�
b0 ÿ a1

l
ÿ a3

l

�
�
�
b1 ÿ 2a2

l

��
x

l

�
: �9�

Let the element whose shear related sti�nes matrix is based on this ®eld-consistent strain, gCC, be
refered to as the CC element to indicate that the Consistent strain-®eld has been reconstituted in a
variationally Correct way.

5. Consistent-(variationally) incorrect element

A commonly used procedure for deriving a smoothed strain is to apply the least squares smoothing
operation to the displacement function and then to derive the smoothed strain from this
(Jayachandrabose and Kirkhop, 1984). Thus, in this instance, a smoothed w� is obtained from w using

d
�
�w� ÿ w�2 dx � 0: �10�

If a shear strain is then computed using w,�x it can then be expressed as

gCI �
�
b0 ÿ a1

l
ÿ a3

l
� 2a3

5l

�
�
�
b1 ÿ 2a2

l

��
x

l

�
: �11�

It must be noted that gCI di�ers from gCC by the underlined term in Eq. (11)ÿ(2a3/5l ). Moreover, the
reconstitution procedure used here has violated the variational correctness norm, which can be strictly
met only if the orthogonality condition described in Eq. (8) is satis®ed. The di�erence seen between gCC
and gCI is due to the violation of this correctness requirement. Its implication is worked out in the next
section.

Let the element whose shear related sti�ness matrix is based on the smoothed shear strain, derived in
Eq. (11) be called the CI element to indicate that the Consistent strain ®eld has been reconstituted in a
variationally Incorrect way.
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6. Analytical predictions

The test problem given in Table 1 is carefully chosen to highlight the performance capabilities of
various versions of this element (ORIG, CC and CI) and which allows us to relate their performance to
predictions derived from the basic paradigms involved in understanding their behaviour.

The intensity of loading can be described by the function

q�X � � q�Lÿ X �
L

: �12�

Simple engineering analysis allows the computation of shear force and bending moment as

Q�X � � q�Lÿ X �2
2L

�13�

M�X � � q�Lÿ X �3
6L

: �14�

The shear force in the beam, for a given load of 60 lb, will vary quadratically from 0 at the free-end
to 300 at the ®xed-end and the bending moment will vary cubically from 0 to 1000 over the same range.

The bending strain/moment can be computed only as a constant in an element using ORIG
formulation. Recent evidence (Prathap, 1994) indicates that these values will be a least squares accurate
®t of the actual loading. The bending moment for this problem will therefore be computed in a step-
wise fashion. As the beam is thin, with an aspect ratio of 100, the main action is bending; therefore,
convergence of the tip de¯ection will be determined mainly by the rate at which the computed bending
moment pattern approaches the actual cubic variation.

It is important to anticipate analytically the response of the three element versions to the given
loading con®guration. As the computed shear strain/force can vary quadratically within each ORIG
element, as shown by Eq. (5b), this element should be able to recover the shear force variation exactly,
even with a single element.

On the other hand, the CC and CI elements will be able to capture this variation in a linear sense
only (Eqs. (9) and (11)). However, the CI element is expected to be in error in some manner because of
the variational incorrectness introduced. This will be examined with a single element model of CC and
CI versions through the test problem.

Table 1

Data for test problem

L= 10 in; b= 1 in; d = 0.1 in

E= 3 � 107 lb/in2

n=0.3

G= 1.1538 � 107 lb/in2

k= 1.2

r=0.733 � 10ÿ3 lb sec2/in4

Triangularly varying load:

q= 60 lb at X= 0; q = 0 at X=L

Note:

L= 2l

X=(1+x/l )L/2; 0 R X R L; ÿl R x R l
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Let Qan be the analytical solution of shear force variation and let Qorig, QCC and QCI represent the
shear force values of the corresponding element versions. It can be shown that

Qan � ql

4

"
4

3
ÿ 2

�
x

l

�
ÿ 1

3

(
1ÿ 3

�
x

l

�2
)#

, �15�

Qorig � QCC � kGA

�
a3
l

�"
1ÿ 3

�
x

l

�2
#
, �16�

QCC � kGA

"�
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l
ÿ a3

l

�
�
�
b1 ÿ 2a2

l

��
x

l

�#
� ql

4

�
4

3
ÿ 2

�
x

l

��
�17�

QCI � QCC � kGA

�
2a3
5l

�
, �18�

where A is the area of cross-section and k is the shear correction factor. It can be argued, from Eqs.
(15) and (16), that the ®nite element procedure will choose kGA(a3/l ) as being equal to (ÿql/12).
Substituting this value in Eq. (18), it is clear that for the present test problem, one gets

QCI � QCC ÿ 10: �19�
Thus, the shear force from the variationally incorrect CI element will di�er from that predicted by the

Table 2

Convergence of normalised tip de¯ections of a cantilever (wn=30wEI/qL 4)

No. of elements ORIG TB2

1 0.625 1.250

2 0.899 1.094

3 0.954 1.044

4 0.974 1.026

Table 3

Convergence of ¯exural frequencies (rad/sec) of a simply supported beam

Mode # Element type

No. of elements

Exacta

2 3 4 8 16

1 ORIG 639.6 603.4 591.4 580.0 577.2

TB2 809.0 664.8 623.6 587.6 579.0 576.385

2 ORIG Ð Ð 2257 2364 2319

TB2 Ð Ð 3233 2493 2349 2305.540

a Based on Euler±Bernoulli's classical beam theory.
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CC element by a constant shift of 10, if one element idealisation is used. Numerical experiments would

Table 4

Convergence of fundamental thickness shear frequency (rad/sec) of a simply supported beam

Element type

No. of elements

Exact

1 2 3 4

ORIG 0.3967 � 107 0.3967 � 107 0.3967 � 107 0.3967 � 107 0.3967 � 107

TB2 0.3967 � 107 0.3967 � 107 0.3967 � 107 0.3967 � 107

Fig. 1. Bending moment distribution of a cantilever.
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con®rm this later. The CC element model will pick up the correct least squares linear ®t of the actual
variation.

7. Numerical experiments

The test problem is analysed using these three element models. Results from a conventional
isoparametric two-noded beam element based on Timoshenko theory (TB2) are also given in Tables 2±4
for comparison.

Convergence of tip de¯ections of a cantilever towards the analytical solution, as the number of
elements is increased from 1 to 4, is shown in Table 2. Similarly, the proper convergence of ¯exural
frequencies of the ORIG element, for a simply supported beam, can be seen in Table 3. Also, a single
ORIG element is seen to pick up the fundamental thickness shear frequency exactly, for the same beam
in Table 4.

The actual variation and the stair-step variation of bending moment captured by 1, 2 and 4 elements
are shown in Fig. 1. The exact variation is therefore approached closely as more elements are used. This
reinforces the earlier observation about the correlation between the convergence of tip de¯ection to the

Fig. 2. Shear force distribution for one element idealization of a cantilever.
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analytical solution and that of bending moment to the actual cubic variationÐboth converging with
four ORIG elements.

The shear force variation with one element idealisation is shown in Fig. 2. The subscript `f' used in
this ®gure distinguishes results obtained through actual ®nite element computation of the three element
versions from those predicted a priori through the error models (Eqs. (16) and (18)). This ®gure shows
that these predictions are con®rmed exactly.

8. Classi®cation of constraints in anisoparametric formulations

In the light of the results of the ORIG element, the inconsistent constraint of Eq. (6c) needs to be
reinterpreted a posteriori. As the ORIG element could compute accurate displacements, frequencies,
bending moment and shear force distribution, without any of the ill-e�ects, it turns out that a3 4 0
cannot be spurious, in spite of being inconsistent. This is a case di�erent from all other inconsistent
constraints studied so far (Prathap, 1994) which spuriously constrained the unconstrained strain-®eld.

The reason behind the behaviour of the constraint a34 0 could be explained by studying the
unconstrained strain-®eld Eq. (5a). In this formulation, the bending strain which is described solely by y,
does not contain the other ®eld-variable, w, to be spuriously constrained by a3. This results in robust
predictions by the ORIG element, formulated using exact integration.

This observation leads to the classi®cation of constraints into two groups:

Whenever a degree of freedom, which introduces inconsistent constraint(s), also participates in other
unconstrained/constrained strain-®elds, then the inconsistent constraint(s) would turn spurious, resulting
in e�ects such as locking etc. Such constraints are termed as `Inconsistent±Spurious Constraints' (ISC).
Otherwise, the inconsistent constraint remains nonspurious leading to a robust element formulation even
with full-integration of the constrained energy terms. Such constraints can be designated as
`Inconsistent±Nonspurious Constraints' (INC).

9. Constraints of anisoparametric elementsÐrevisited

Now, it would be quite instructive to explore the nature of constraints emerging from various
anisoparametric formulations published so far.

9.1. Inconsistent nonspurious constraints (INC)

Heyliger and Reddy (1988) proposed a higher order anisoparametric formulation, with cubic w and
linear y. Full integration for shear had been employed without any shear locking e�ects.

Now, let the constraints (Eqs. (6a), (6b) and (6c)) be substituted with the values of constants given by
Eqs. (3a), (3b), (3c), (3d) and (4) and one gets the following equations:

�y1 � y2�
2

� �w2 ÿ w1�
L

, �20�

y1 � b1,

y2 � b2, �21�
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�b1 � b2�
2

� �w2 ÿ w1�
L

, �22�

where L = 2l.
It is interesting to note that the three constraints that have been extracted from the shear strain by

Heyliger and Reddy (1988) are exactly the same as those given by Eqs. (21) and (22). Moreover, it can
be seen that when Eq. (21) is substituted into Eq. (20), the constraint given by Eq. (22) is obtained.

It is the nature of Eq. (22)Ðan INC (once the higher order and the nonlinear strain terms are dropped )
which would enable the full integration of shear related terms to yield results without any locking
e�ects.

9.2. Inconsistent spurious constraints (ISC)

Now, this class of constraints which produced locking and stress oscillations in C0 elements (Prathap,
1993) could be studied for their behaviour in anisoparametric elements.

Carnegie et al. (1969) proposed a four noded Timoshenko element in which both the transverse
displacement and face rotation are expanded using cubic polynomial as

w � a0 � a1x� a2x
2 � a3x

3 �23�

y � b0 � b1x� b2x
2 � b3x

3, �24�

resulting in a shear ®eld as,

g � �a1 � b0� � �2a2 � b1�x� �3a3 � b2�x2 � b3x
3, �25�

where b3 4 0 would be an inconsistent spurious constraint as it would also participate in the ¯exural
strain ®eld. Similarly, Thomas and Abbas (1975) presented a two noded beam element with w and y
expansions as in Eqs. (23) and (24), resulting in ISC.

The beam formulation of Heyliger and Reddy (1988) needs to be studied here, wherein the higher
order terms are retained. The displacement model and the strain terms are given as

u � u0 � zyx ÿ kz3�yx � bx� �26�

w � w0, �27�

where

k � 4

3h2
, bx � @w

�
@x, �27a�

ex � u0,x � zyx,x ÿ kz3�yx,x � bx,x� �28�

gxz � �1ÿ 3kz2��yx � bx�: �29�
If the displacements are expanded as

u � a0 � a1x �30�
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yx � b0 � b1x �31�

bx � c1 � 2c2x� 3c3x
2, �32�

the strain ®elds can be rewritten as

ex � a1 � zb1 ÿ kz3�b1 � 2c2 � 6c3x� �33�

gxz � �1ÿ 3kz2�
�
�b0 � c1� � �b1 � 2c2�x� 3c3x

2
�
, �34�

where c3 is an inconsistent constraint and would be spurious as it also participates in ¯exural strain, as
in Eq. (33).

Similarly, a higher order C1 continuous shear deformable plate element has been developed with full
integration for evaluating shear strain energy without locking (Phan and Reddy, 1985). The inplane
displacements (u,v ) and face rotations (yx,yy ) are interpolated linearly over a four-noded rectangular
element, while transverse displacement is interpolated using Hermite cubic polynomial as shown below:

u0 � a0 � a1x� a2y� a3xy, �35a�

v0 � b0 � b1x� b2y� b3xy, �35b�

yx � c0 � c1x� c2y� c3xy, �35c�

yy � d0 � d1x� d2y� d3xy �35d�

w � e0 � e1x� e2y� e3x
2 � e4xy� e5y

2 � e6x
3 � e7x

2y� e8xy
2 � e9y

3 � e10x
3y� e11xy

3 �35e�
The displacement model is given as

u � u0 � k1yx ÿ kz3bx, �36�

v � v0 � k1yy ÿ kz3by �37�

w � w0, �38�

where

k1 � �zÿ kz3�, by � @w
�
@y �38a�

and the strain components of the plate element in ¯exure can be expressed from the above as

ex �
ÿ
a1 � k1c1 ÿ 2kz3e3

�
ÿ 6kz3e6x�

ÿ
a3 � k1c3 ÿ 2kz3e7

�
yÿ 6kz3e10xy, �39�

ey �
ÿ
b2 � k1d2 ÿ 2kz3e5

�
ÿ 6kz3e9y�

ÿ
b3 � k1d3 ÿ 2kz3e8

�
xÿ 6kz3e11xy, �40�
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gxy �
ÿ
a2 � b1 � k1�c2 � d1� ÿ 2kz3e4

�
�
ÿ
a3 � k1c3 ÿ 4kz3e7

�
x�

ÿ
b3 � k1d3 ÿ 4kz3e8

�
y

ÿ 6kz3e10x
2 ÿ 6kz3e11y

2, �41�

gxz � k2
�
�c0 � e1� � �c1 � 2e3�x� �c2 � e4�y� �c3 � 2e7�xy� 3e6x

2 � e8y
2 � 3e10x

2y� e11y
3
�

�42�

gyz � k2
�
�d0 � e2� � �d1 � e4�x� �d2 � 2e5�y� �d3 � 2e8�xy� e7x

2 � 3e9y
2 � 3e11xy

2 � e10x
3
�
�43�

where

k2 � �1ÿ 3kz2�: �43a�
Now, the inconsistent constraints can be expressed as

ei40; i � 6,7 . . . 11: �44�
Here, all these inconsistent constraints turn spurious due to their participation in other strain ®elds, as

seen from Eqs. (39)±(41).
Balasubramanian and Prathap (1989) formulated an arch element wherein the inplane displacement u,

radial displacement w and the face rotation y were all expanded using cubic polynomials, retaining ISC.
In all these cases of anisoparametric elements, ISC do not directly lead to shear locking, but to

delayed convergence and stress oscillations. Error models to predict these e�ects a priori (Prathap, 1993)
and stress oscillations patterns (Balasubramanian and Prathap, 1989) can be seen in these works.

9.3. Consistent constraints (CC)

The consistency of constraints in anisoparametric elements are maintained either by choosing
appropriate order of polynomials for the variables participating in the constrained strain ®eld or by
considering the constrained strain ®eld itself as an independent degree of freedom.

The ®rst approach has been adopted by Tessler and Dong (1981) and Nickel and Secor (1972). The
latter modelled w using a cubic polynomial as in Eq. (23) and the face rotation y with a quadratic
polynomial as

y � b0 � b1x� b2x
2, �45�

resulting in shear strain as

g � �a1 � b0� � �2a2 � b1�x� �3a3 � b2�x2: �46�
It can be seen that the constraints from this shear strain ®eld would be consistent (Prathap, 1993)

with coe�cients from both w and y participating in all of them.
The alternate approach of retaining the constrained shear angle itself as a nodal degree of freedom

had been adopted by Thomas et al. (1973) and To (1981). The transverse displacement is represented by
a cubic polynomial as in Eq. (23) and the shear angle g using a linear one as

g � b0 � b1x: �47�
As the shear strain is retained as an independent entity and the shear energy is computed based only

on g (without any participation from other degrees of freedom), it remains consistent. The face rotation
y is then computed, in these cases, for evaluating bending energy as
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y � w,x � g: �48�
As a minor variation on this approach, Kapur (1966) treated the transverse displacement due to

¯exure and shear independently using cubic polynomials as (wf as in Eq. (23)),

ws � b0 � b1x� b2x
2 � b3x

3 �49�
with the shear strain described as and shear energy evaluated from

g � b1 � 2b2x� 3b3x
2: �50�

As this shear strain ®eld is independent of the ¯exural ®eld, it remains consistent.

10. Conclusions

An analysis of an anisoparametric shear deformable element has been carried out using ideas that
have emerged from what are called the ®eld-consistency, variational-correctness and best-®t strain
prediction paradigms (Prathap, 1994). This has led to an important classi®cation of ®eld-inconsistent
constraints into two classes such as `spurious' and `nonspurious'. The main advantage of such a
classi®cation is the availability of a priori knowledge about the behaviour of such anisoparametric
formulations.

Moreover, these paradigms provide a powerful conceptual framework on which the analytical study
of ®nite elements can be based. Error models derived from these concepts are then veri®ed by actual
digital computation to show that the performance of such element(s), which are somewhat
unconventional in design, can be rationalized in a scienti®c manner.
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